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Summary 

This paper describes an analysis of the Thorney Island data using nonparametric statistical 
techniques. Particular emphasis is placed on methods; some of which are used to obtain estimates 
of c (1c, t) , the mean concentration, and 7 (x, t) , the concentration variance, for this particular 
series of experiments. Qualitative and semi-quantitative relationships between these variables are 
sought using simple stochastic models. A principal objective is to characterise the relationship 
and hence draw inferences for dense gas dispersion. 

Useful estimates of the time dependence of I? and c2 are an important achievement of this 
investigation. Significantly the variability, as characterized by R (C) =7/c*, is shown to be large. 
This is an interesting conclusion that may have important consequences for the assessment of 
hazards in dense gas dispersion. 

1. Introduction 

The dispersion of dense contaminants in the atmosphere is an important 
practical problem because of the hazards that are associated with many typical 
admixtures. Specifically, petroleum products are dangerous because of their 
flammability while other materials, such as chlorine or ammonia, are toxic 
when inhaled in large doses. These hazards have been addressed by several 
authors [ 1,2] with the conclusion that C(X, t) , the contaminant concentra- 
tion by volume, is essential for a realistic assessment of the hazard. In reality, 
as emphasised by Chatwin [ 3 1, however C (x, t) is a random variable because 
the dispersion takes place in a medium that is invariably turbulent - the atmos- 
pheric boundary layer [ 4 ] . The statistical properties of C (x, t) are thus required 
for a description of this process in practice. They are the subject of the numer- 
ical investigations that are presented here in this paper. 

It is appropriate to mention first the characterisation of C ( X, t ) by its com- 
plete set of moment quantities C’ (x, t) [ 51. These may be defined by an 
operation of ensemble averaging on C like the one described in Chatwin [ 31. 
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The most important for practical purposes are the first two moments C( X, t) , 
the ensemble mean concentration, and C2 (x, t), the ensemble mean square 
concentration. The concentration variance, 

c2 (X, t) ={C(x, t) -C(X, t)}2={C2(X, t) -F(X, t)} (1.1) 

is thus inevitably a measure of the deviation of C( x, t) from its mean value in 
any one realisation of the process. This lies behind the proposal in Chatwin 
[ 31 to characterise the variability of the concentration field by the fluctuation 
intensity R ( C) = p/C”. Hence, if R ( C) is large, it is necessary to make use of 
both C ( X, L) and c2 (x, t) for the assessment of hazards. 

Experimental evidence, from a number of sources, summarised in [ 61 indi- 
cates that this is indeed the case for some dispersion phenomena at small scales. 
However, very little information about the magnitude of R (C) in large scale 
dispersion processes is available at the present time. This is particularly true 
in the case of instantaneous releases where many current mathematical models 
(such as those summarised in [ 71) do not even acknowledge the statistical 
nature of the phenomenon. This situation has changed recently with the avail- 
ability of data from the Thorney Island heavy gas dispersion experiments which 
is suitable for a study of C ( X, t) and 2 (x, t) . The work described within is 
thus intended to remedy deficiencies in our knowledge of these properties for 
a particular ensemble of the Thorney Island experiments. 

Some results of research along these lines and brief details of the method 
have been published before in Carn, Sherrell and Chatwin [ 81. However, the 
presentation here is more comprehensive and directed towards choosing a suit- 
able framework for the analysis of the Thorney Island experiments. Particular 
emphasis is placed on methods, some of which are new, and some proposals 
are made for future research. Thus Section 2 contains a detailed description of 
the methods used for the analysis of the data set, Section 3 discusses the con- 
text in which such an analysis should be interpreted and Section 4 describes 
the numerics of the procedure. Sections 5 and 6 contain the bulk of the discus- 
sion of the analysis and its results. In summary this investigation concludes 
that R (C) is of order unity, consistent with most observations of small scale 
processes. 

These results have been obtained without the use of any questionable 
assumptions about the dispersion of dense gases in the atmosphere and retain 
the full space-time dependence of the concentration field not allowed for in 
the only other relevant study by Davies [ 91. This work may thus have impor- 
tant applications and implications for hazard analysis in the future. 

2. Methods for the statistical estimation of multivariate regression 
functions 

The problem that we face with the analysis of data from the Thorney Island 
experiments is the estimation of functions, like C (x, t ) , which depend contin- 
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uously on space and time. Classical statistical theory provides several methods 
which are useful for this purpose given a sample of realisations of C, i.e. of 
values C ( x ) at all points x in the domain of definition. An example illustrating 
a modern approach to this problem has been described by Davies [ 91. The 
difficulty with the Thorney Island data set is that we do not have even one 
complete realisation of C (x, t ) . This is because, by necessity, concentration 
measurements were made only at discrete locations in space and time. 

In this section we are concerned with methods for the solution of problems 
of the above type in statistical estimation. Hence though some of this material 
may be skipped much of it is an essential preliminary to the analysis described 
in Sections 3 and 4. 

Consider first the estimation of C ( X, t) , the first order regression function. 
The classical approach to this problem would be to fit a regression model to 
the data as described for example in Kendall and Stuart [ lo]. Thus assume 
that N data values yi= C( Xi) are available and that m (x 1 a), a parametric 
model for C(x) , is specified. Hence, 

yi={C(xi) +c(xi)}={m(xi Ia) +e(xi)}; i=l, ... N (2.1) 

where the ei, i= 1, . . . n are the data residuals; normally assumed to be indepen- 
dent, identically distributed random variables ( i.i.d. > . The parameters a need 
thus only be chosen, as can be achieved by the minimisation of an appropriate 
loss functional S ( a). Conventionally use is made of the following, 

S(a)=UNi$l{Yi-m(xi Ia)j2 (2.2) 

in least squares regression. 
The trouble with this approach is that it presumes the functional depen- 

dence of m( ) on x and a is prescribed. This is the source of considerable 
difficulties since, in dense gas dispersion, no such model is known which retains 
a full dependence on the spatial coordinates X. We could of course accept this 
deficiency and make use of a box model for C(x) [ 111. Fortunately recent 
developments in statistical estimation theory suggest a viable alternative pro- 
cedure. This is to develop a nonparametric model for the regression function 
[ 121, so called because it involves much weaker assumptions about the func- 
tional dependence of m( ) on x and a. 

The methods we shall make use of in this work are in fact derived from 
nonparametric estimates of the joint probability density of concentration and 
sampling location f( 8, x) . As described in Prakasa Rao [ 121, such an estimate 
is, 

fjv(8, X) ={$D4+‘}i~lJ{ (e-ei)/D, (x-xi)/Dl (2.3) 

where J( 8, x) is a 4 + 1 variate probability density and D is a bandwidth 
parameter that has yet to be specified. Note that we have, 
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x= tx, t) = (&/PI, G/P23 %/P3, UP41 
where the flj, j = 1, . . . 4 are scaling parameters. Hence, because, 

m(x) = 6’f(0]x)d0 
0 

f(elx) = (f(e, x)ljh’A x)de) (2.6) 

(2.4) 

(2.5) 

it is appropriate to estimate c(x) by, 

WV(~) =$%Wx)dW’$&$ x)de} (2.7) 

Following arguments described in Prakasa Rao [ 121 this may be shown to _ _ 
reduce to the form, 

N 

provided, 

J(0,x)=L(B)K(x): j0L(@d&O (2.9) 

assumptions whose validity is discussed in Carn [ 131. Hence it remains only 
to specify the “Kernel” function K(x) for eqn. (2.8). This may be taken to 
have the form, 

K(x) = 

1 

ConstantX(l- 1x1’) forall Vlx] <l 
(2.10) 

0 for all V]x] >l 

according to theoretical arguments summarised in Gasser and Muller [ 14 ] and 
Sacks and Ylvisaker [ 151. 

Clearly eqn. (2.8) provides a class of regression estimators for c (x, t) which 
depend on the definition of the bandwidth parameter D. Three possibilities in 
particular are of importance. Thus when; 

2 (i) D ( x:xi) = hN, a constant, eqn. ( 2.8) is a Kernel type estimator; 
2 (ii) D (x:xi) =Hi(x> , the distance from x to its K-th nearest neighbour, 

eqn. (2.8) is a nearest neighbour estimator; 
2 (iii) D ( x:xi) = HKi, the distance from xi to its K-th nearest neighbour, 

eqn. (2.8) is a variable Kernel estimator. 
Some details of the statistical properties of these estimators are described in 
Carn [ 131. It is worth mentioning here that, provided, the ei are i.i.d. and 
N+oo so that ND;t+O, mlv( x) is asymptotically unbiased, normally distrib- 
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uted and of minimum possible variance [ 141. This provides the statistical jus- 
tification for the use of such methods in regression analysis. 

Any one of 2 (i ) - (iii) may thus be used for the estimation of c‘( x, t ) from 
the Thorney Island data given a set of optimum parameters a= (8, D) for the 
procedure. To choose these we could make use of a number of possibilities 
including eqn. (2.2), i.e. ordinary least squares. Theoretical evidence due to 
several authorities however, summarised in Carn [ 131, suggests the use of an 
alternative. Hence the minimisation of the Cross Validation function, 

S(a) =CV=~/NIIB.(I-A).Y~~~: B=(l/(l-_jj)6uj}NXN (2.11) 
y=(A*y+E): A={aij}NXN 

is recommended and is supported by the numerical evidence presented in Rice 
[ 161. Setting a=& at the minimum we may thus estimate C(x) by, 

C(x)=m&x]&) (2.12) 

i.e. mN(x,yI&). 
To estimate 2 note the following inequality, 

=aY2) ap(Y)y (2.13) 

[ 13 3, valid whenever -9 is linear in the data values. Then using the same opti- 
mum parameters as above and the definition contained in eqn. (1.1) , such an 
estimate is, 

E”(x) ={%J(X, Y2 I&) -{mdx, YlWj2} (2.14) 

This statistical methodology, i.e. eqns. (2.8), (2.11) and (2.14)) has been used 
to obtain the estimates of C(x) , c2 (x) that are described in Section 5 of this 
paper. 

Finally we note that an interesting alternative to eqn. (2.8) is suggested by 
the observation that C (x, t) satisfies the following integral constraint: 

[C(x, t) dx=JC(x, t) dzc= v, (2.15) 

i.e. the conservation of mass condition. Thus it may be appropriate to estimate 
C(x) by a time dependent probability density function. Such an estimator 
[13] is: 

MN(X, t) = V, (fN(etxL G/S fN(e(x), t) dx} 
(2.16) 

N N 

1(t) =JK(x, t) dx (2.17) 
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though its statistical properties are unknown at the present time. Note also 
that eqn. (2.16) is nonlinear in the data values and so precludes the use of eqn. 
(2.14) for the estimation of 7. As a consequence we refer to eqn. (2.16) only 
tentatively in this study. 

All the estimates described in this section retain the fully three dimensional 
dependence of the concentration field. Their significance is that they embody 
no questionable physical assumptions, unlike those in current parametric 
models of dense gas dispersion. 

3. A model ensemble of the Thorney Island experiments 

To apply the methodology of Section 2 to the Thorney Island data we must 
first specify an ensemble for the analysis of these experiments [ 3 1. As a pre- 
liminary it is useful to review the characteristic features of the data set as 
apparent, for example, from McQuaid and Roebuck [ 17 1. Thus typically 10,000 
concentration values {C ( xi, tj) } are available for each of the 13 Thorney Island 
Trials 7-19. These were recorded on the observation site of roughly 500 m 
square and cover several hundreds of seconds at 0.6 s intervals. Not more than 
73 spatially separated concentration sensors detected gas, at fixed locations, 
at four heights of 0.4, 2.4, 4.4 and 6.4 m above the ground. The horizontal 
separation of the recording sites was thus typically of order 100 m (see Fig. 
3.1) which may be compared with the initial dimensions of the contaminant 
distribution; cylindrical of radius 7 m and of height 13 m. 

While it may seem that this is ample data for the regression procedure of - 
Section 2 to yield reliable estimates of C(x) , c2 (x) there are in fact some 
essential difficulties with such an approach. Thus observations reveal that a 
typical horizontal dimension of the dispersing cloud is of order 100 m. In addi- 
tion the values of C ( xi, tj) recorded in any one realisation of C ( X, t) are likely 
to be strongly correlated from point to point in space, at least as a consequence 
of the conservation of mass condition eqn. (2.15). These features are statis- 
tically undesirable and very poor estimates of C (x) , p(x) are likely to result. 
More observations of C (x, t) are to be desired but none are available as each 
of the Phase I trials was distinct. 

These difficulties can fortunately be resolved by an appropriate choice of the 
system ensemble for the dispersion process [ 3 ] ; that is by a precise description 
of the conditions under which two distinct trials can be considered equivalent. 
This definition can include the variation of the physical parameters of the 
experiment within certain limits and is justified physically provided it remains 
relevant to the practical problem under consideration. It is thus necessary to 
choose an ensemble which is appropriate for the purpose of hazard assessment. 
We shall discuss several possibilities for this choice in this section. 

It is important first to classify the Thorney Island experiments according to 
some measure of their physical compatibility. The Richardson number 
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Fig. 3.1. The distribution of sampling across Trials 7-19: + concentration sensors, * origin of 
release. 

(3.1) 

(see McQuaid and Roebuck [ 171) is used almost universally for this purpose. 
Here (p, --p,) /p. is the initial excess density, h is the initial cloud height and 
u is characteristic of the turbulent fluid velocity. Values of these parameters 
for the Thorney Island experiments are included in Table 3.1 (taken from 
McQuaid and Roebuck [ 171). In this study we shall make comparisons on the 
basis of the following alternative to eqn. ( 3.1) : 

t 

Q,(t) =1/t ,Ri(ZOO)/,Ri(t) dt 
0 

(3.2) 

since this emphasizes that, in reality, Ri is a function of time as well as an 
ensemble mean property. Figure 3.2 displays the variation of the QK ( t) across 
the Thorney Island experiments. It is apparent that these records can be divided 
into two categories within which the Q, ( t) are within a factor of 4; i.e. for large 
values Trials 13-16, 18 and 19* and for small values Trials 7-12, and 17. On 

*In this study trial 16 was excluded as it is clear from data given in McQuaid and Roebuck [ 171 
that it corresponds to the release of an untypically small volume of gas. 
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TABLE 3.1 

Environmental conditions of the Thorney Island experiments (from McQuaid and Roebuck [ 17 ] ) 

Trial Wind 
No. Speed m/s 

Stability 
class 

Gas 
density 

Sensors 
seeing gas 

7 3.2 E 0.75 55 
8 2.4 D 0.63 73 
9 1.7 F 0.60 62 

10 2.4 C 0.80 11 
11 5.1 D 0.96 23 
12 2.6 E 1.37 65 
13 7.5 D 1.00 47 
14 6.8 C/D 0.76 50 
15 5.4 C/D 0.41 38 
16 4.8 D 0.68 45 
17 5.0 D/E 1.20 62 
18 7.4 D 0.87 60 
19 6.4 D/E 1.12 67 

e 50 I @M ’ 513 zo!? 7 
Time(s) 

Fig. 3.2. Comparative Richardson numbers across Trials 7-19. 

this basis it was decided to choose Trials 13-15, 18 and 19 as the components 
of a preliminary ensemble. 

It thus remains, only to specify the role of the wind direction $J in Trials 
13-15, and 19 as this is the one remaining free parameter. Of course $J must be 
defined as the time average of the instantaneous wind heading @( t) and it is 
the statistical variation of this propety, with respect to a particular reference 
direction x = t,u, that is fundamental in characterising the ensemble. We thus 
have at least three distinct possibilities for the system ensemble as a conse- 
quence of the following simple symmetry assumptions: 
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3 (i) The statistical variation of G(t) , measured absolutely in the plane, is 
laterally symmeytric about x = 6, the ensemble mean wind direction; 

3 (ii) The statistical variation of @(t) , measured relative to I$ in the plane, 
is laterally symmetric about x = @, the realised wind direction; 

3 (iii) The statistical variation of@(t) , measured with respect to any partic- 
ular direction w in the plane, is radially symmetric about x = ok. 

In the ensemble corresponding to 3 ( i) equivalent realisations of C (x, t) are 
compared by superimposing samples directly in the horizontal plane. This is 
because @ ( t ) varies with respect to a well defined fixed direction x = 6. For the 
Thorney Island data set this means that records from the same instruments in 
different experiments occupy the same sites in the system ensemble. This def- 
inition has been considered quite widely and is illustrated for example in Fig. 
15.2 of McQuaid and Roebuck [ 171. 

In the ensemble corresponding to 3 (ii) however equivalent realisations of 
C (x, t) are compared by superimposing samples so that the wind directions & 
are coincident in the horizontal plane. This is because $( t) varies with respect 
to x = @, the realised wind direction. A consequence for the Thorney Island 
data set is that in the system ensemble observations from the same instru- 
ments do not in general occupy the same sites. The profile of the mean cloud 
is rather better defined than in 3 (i) and is illustrated here for Trials 13-15,18 
and 19 in Fig. 3.3. 

In ensemble 3( iii) we have yet another alternative to 3(i) or (ii). Here 
equivalent realisations of C( x, t) are compared by superimposing samples from 
all radially equivalent points in the horizontal plane. This is because, as @(t) 
is radially symmetric, the statistical properties of C (x, t) are dependent only 
on the same t, the height h and the horizontal radial coordinate r. The distri- 
bution of sample sites is intermediate to that of (i) or (ii) as may be deduced 
by an examination of Fig. 3.3. 

The use of either of the ensembles 3 ( i ) - (iii ) is thus an equally valid basis 
for an analysis of the Thorney Island experiments. However each is accrued 
with its own peculiar advantages and disadvantages. Thus although 3 (i) allows 
corresponding instruments to be compared it admits no progress as regards the 
spatial definition in the data set. This situation is reversed for ensemble 3 (ii) 
which is more characteristic of a single realised cloud (or perhaps of experi- 
ments in wind tunnel). Finally in ensemble 3 (iii) we have a perspective on 
these experiments, appropriate to dispersion in an isotropic flow, which achieves 
the greatest condensation of the spatial data set. It remains to decide which of 
these alternatives is the more relevant for an assessment of hazards in dense 
gas dispersion. 

The suggestion advanced in this paper is that the most appropriate frame- 
work for a study of this problem is in fact 3 (ii). This is because in any given 
release of a heavy gaseous material serious hazards are most likely to occur 
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Fig. 3.3. A realisation of ensemble 3 (ii) for Trials 13-15, 18 and 19. 

astride a path coincident with the mean flow direction. It is thus important to 
have estimates of c (x ) ,p ( x ) for dispersion in an ensemble of releases con- 
sistent with such a realisation. For this reason we shall consider the estimation 
of these statistical properties from Trials 13 to 15,18 and 19 in an ensemble of 
type 3 (ii) using the statistical methodology described in Section 2. 

4. Algorithmic and numerical details of the estimation procedure 

Before discussing the algorithmic details involved in obtaining estimates of 
c, 2 from the Thorney Island data we require to construct a realisation of the 
ensemble 3 (ii). Estimates of the wind direction @ were obtained by choosing 
stable values of the time mean wind heading, 

t 

@=1/t 
s 

@(t) dt 
0 

(4.1) 

at the origin. Such values were found to occur 200 s after the release of the 
contaminant and were used to superimpose the data from Trials 13 to 15, 18 
and 19. A reflection across the line X=400 m was used to obtain the lateral 
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symmetry implicit in the definition of 3 (ii). The final result was thus as illus- 
trated in Fig. 3.3. 

After sensible truncation the data set available for the estimation of C and 
2 c was, 

d={C(~i,tj):i=l,... 318;j=l,... 416}:~=(~,~,0.4m) (4.2) 

because C ( X, t ) was observed to be a rapidly decreasing function of z. Thus 
approximately 250 s of the record were retained. Of the 318 spatial sampling 
locations 148 (including lateral symmetry) detected gas while the remainder 
did not. 

Estimates of C( X, t) etc. may thus be obtained from eqn. (4.2) using the 
methods described earlier. There remain however some theoretical difficulties 
associated with such an analysis that make it desirable to prefer a slightly 
modified procedure. It is apparent to begin with that there is a much greater 
profusion of temporal data than occurs in either of the two spatial directions. 
As seriously, it is implicit in the construction of 3 (ii) that the spatial data 
sample displays a measure of point to point statistical independence while with 
respect to time the record is very strongly correlated. The data set d is thus not 
directionally isotropic. 

To take account of the first of these difficulties it is only necessary to intro- 
duce scaling parameters fij, j = 1, . . . 4 as earlier, i.e. eqn. (2.4) and carry out the 
analysis with this in mind. The second however is less easy to deal with. The 
approach employed here, which cannot be justified at present except on intu- 
itive grounds, was to partition d into r distinct subsets with respect to time i.e., 

A={& u&J u...d,u...udz} (4.3) 

dP={C(xi, t+-l)r+p): i=l, .._ 318;j=l, . ..416/r} (4.4) 

Then choosing z so that the dP are relatively statistically independent as anal- 
ysis can be applied to each of the d, in turn and a final estimate obtained as 
the average of these values. This suggests new definitions, 

m*(x:d) =1/r i: m(x:d,) 
p=l 

M*(x:d) =1/z i: M(x:d,) 
p=l 

(4.6) 

e2=(m*(y2)-7n*(y)2) (4.7) 

which were in fact employed in preference to the simpler procedure of Section 
2. 

Consider now the estimation of C (x, t) from (4.2). A specific form for the 
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Fig. 4.1. Sorting nearest neighbours from an array along a line. 

basic estimator in eqn. ( 4.5 ) must first be chosen from the class of alternatives 
2 ( i) - ( iii ) . The irregular distribution of the spatial data points makes it sen- 
sible to prefer a definition which is data adaptive i.e. either of 2 (ii) or (iii). 
The first of these alternatives - the method of nearest neighbours - was adopted 
because it is computationally the least complicated. It was thus necessary to 
construct the set of K-th nearest neighbours for the set of points comprising 
eqn. (4.2). The optimum values of K and cx were chosen by minimisation of 
the Cross Validation function eqn. (2.11). 

The construction of the set of K-th nearest neighbours to a point for a data 
sample like eqn. (4.2 ) in fact involves surprising little computational penalty. 
A valuable pre-processing of the data set for this purpose has been described 
by Friedman, Basket and Schuster [ 181. This may be combined with any one 
of the rapid sorting procedures available [ 191 to yield an efficient algorithm 
for this problem. 

To minimise computer storage requirements however a different approach 
was implemented which takes account of the homogeneity of the data set with 
respect to time. Careful thought shows that the set of K-th nearest neighbours 
to any fixed time subset of eqn. (4.2) is the same for all time 
0.6 ( [ ~/2 ] + 1) < t d 0.6 (416 - [ lc/2] ) . Hence the size of the sorting problem 
is never greater than 318 ( [ lc/2 ] + 1) values and there are only 318 [ ( ~/2 ) + 1 ] 
such calculations to perform. The full calculation is of course slightly more 
complicated since the set of nearest neighbours is required for all 416 time 
points for each of the subsets dP, p= 1, . . . z. This problem is illustrated in Fig. 
4.1 for the case z =4, K= 7. Evidently it is necessary to sort 318 (2~ + 1) data 
values (at most) on r( [K/2 ] + 1) occasions for half of the 318 spatial obser- 
vation sites (because of lateral symmetry). Fortunately this is only necessary 
for one of the partitions of ( 4.2 ) because of symmetry. As only small values of 
z and K are likely to be encountered in practice this approach is not substan- 
tially less efficient than that of Friedman, Basket and Schuster [ 181. A simple 
pass sorting method [ 191 was considered satisfactory as a consequence. 

A particular advantage of the method of nearest neighbours, subject to the 
use of a Kernel function like eqn. (2.10)) is that it allows an efficient construc- 
tion of the regression function eqn. (4.5). To see this it is only necessary to 
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Scale parameter tm) 

Fig. 5.1. Value of K, at the minimum of Cross Validation, for various values of the scale parameter. 

note that by definition K( x/H, ) = 0: V 1 x 1 > H,. Hence the operation of sort- 
ing nearest neighbours automatically prescribes the data sample for use in eqn. 
(4.5). No more than ( 2~ + 1) additions need to be performed as a result to 
obtain each estimate of C ( X, t) . This would not be the case if a kernel with 
unbounded support were to be used in place of eqn. (4.10 ) or if another method 
( say the variable Kernel estimator 2 (iii) ) was employed instead. 

It remains only to discuss the choice of optimum parameters for the proce- 
dure and the estimation of c2 from eqn. (4.2). In principle this can be achieved 
by the minimisation of the Cross Validation function but in practice a satis- 
factory optimisation is not possible because of the size of the data set involved. 
Hence it was necessary to compromise and place emphasis on obtaining the 
optimum value of the number of nearest neighbours K. The dimensionality of 
the problem was reduced by choosing fll =p2 and p3 (clearly not a critical 
parameter in this analysis) was chosen by empirical examination of the data 
set to be 2.0 m. A value of z =4 was chosen to minimise the computational 
problems associated with the construction problem. Hence it was necessary to 
determine only one additional parameter 6 = (p1:p4) m/s since the operation 
of sorting nearest neighbours involves only relative proportions of lengths. 
This value was chosen by seeking to minimise the Cross Validation function 
in such a way as to maximise K at the minimum. Estimates of c2 were obtained 
via eqn. (4.7) using the same optimum parameters. 

5. The results of the regression analysis: estimates of the mean and 
variance 

Fixing p4 at 2.4 s, /I1 was allowed to vary in the range [ 6, 211 m increments 
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of 3 m. The number of nearest neighbours K was allowed to vary up to a max- 
imum of 20. Realisations of the Cross Validation function were constructed for 
each of these cases and the results are as summarised in Fig. 5.1. Evidently 
K= 17,6 = 6.25 m/s is a satisfactory choice of parameters. 

These values of K and S were used to obtain estimates of e (x, t ) ,p (x, t) 
at all the points comprising (4.2) using eqns. (4.5-4.7). In view of the limi- 
tations of the optimisation procedure however it must be emphasised that these 
should be regarded as purely numerical experiments at the present time. None- 
theless the results are encouraging since they display a smooth continuous 
dependence on both the position and time unlike, for example, ‘box’ models. 
This is all the more remarkable since no parametric assumptions about dense 
gas dispersion are involved in this analysis. 

5.1 Estimates of the mean concentration 
It is interesting to compare the estimates of C ( X, t) with the data records 

associated with each of the 74 distinct spatial observation sites. Ten of these 
records are presented in Fig. 5.2 for the most part for points near to the origin 
of the release. A wide variety of structures are apparent though there are sev- 
eral features in common. Hence the estimates obtained are invariably smooth 
and the peak concentration value is closely comparable with that of the data 
record. The instantaneous discrepancy between the estimated and realised 
concentration however is frequently large and sometimes disturbingly so (i.e. 
notably Figs. 5.2 ( iv ) and (ix) ) . This is indicative of substantial variability 
associated with the dispersion of dense gases as will be discussed further later 
on this paper. What is particularly striking though is the comparison between 
the estimated mean concentration and that characteristic of box models. Rather 
than the simple monotonic decay normally associated with the latter the time 
evolution of c ( X, t) is much more like that of a dissipative solitary wave. While 
it is not possible to give a theoretical justification for this observation at the 
present time it should be borne in mind for future research. 

Several contour maps of the spatial variation of e (x, t ) were prepared to 

(I) Trial 19 
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Fig. 5.2. Estimates of the mean concentration: Time record for Trials 13-15,18 and 19; ~ data, 
--- estimate. 
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assess the applicability of this analysis to the delineation of hazardous bound- 
aries in dense gas dispersion. These are illustrated in Fig. 5.3 and the downwind 
trend in the mean concentration is certainly well indicated. Overall though 
these estimates are rather poor as they suffer the absence of sufficient values 
of C (x, t) near the origin and the invalid assumption p1 =fi2. To see whether 
the form eqn. (4.6) produces any improvements in this respect similar esti- 
mates of e (x, t) were produced using definition 2 (i) and are displayed in Fig. 
5.4. The improvement is suggestive and justifies further investigation of the 
estimator for this purpose. 

5.2 Estimates of the concentration variance 
Estimates of the concentration variance were prepared at each of the 74 

spatial sitres in the data set eqn. (4.2). The square root variance is plotted 
against the instantaneous fluctuation in Fig. 5.5 for the same 10 points consid- 
ered above. Again several features of these records are apparent. Thus the esti- 
mated fluctuation is significant in comparison with the estimated mean 
concentration and is also more persistent in duration. The estimates are smooth 
though considerable structure is apparent. 

The most striking feature of these records is a characteristic double peak in 
the evolution of ,/c” with time. This is shown clearly in Fig. 5.5 (i) and (ii) 
for points near to the origin of the release where the first peak is the more 
distinctive. Further out this diminishes in comparison with the second and a 
broad depression develops in the centre of the record. Eventually this structure 
is lost far out from the origin. 

It is interesting to speculate on the origins of this behaviour. Thus one pos- 
sible reason for the occurrence of the first peak is that it reflects the presence 
of real variations within the cloud. A prominent annular structure to the 
instantaneous cloud has been observed from aerial photographs in the early 
stages of the release and this would certainly contribute to this feature. A pos- 
sible explanation of the second peak is another change in the internal state of 
the cloud though this is more difficult to identify. As will be shown later some- 
thing of this kind should be expected on purely statistical grounds. 

Some contours of the spatial variation of the square root variance are illus- 
trated in Fig. 5.6. It is interesting to note that these estimates indicate quite 
substantial variation of &?(x, t) in the horizontal plane. Some of this is 
undoubtedly due to the instantaneous structure of the cloud which, as noted 
above, is dominated by an annular feature in the early stages of the dispersion. 
The far field persistence of these estimates is certainly greater on occasions 
that that of C(x, t). 

To illustrate the points raised in the above discussions it is useful to consider 
a simple stochastic model of C ( t ) and to examine the records of C ( t ) , &? ( t ) 
produced by a process of ensemble averaging. When C ( t ) is dependent on two 



0 20 40 60 80 100 

Time (5) 

24 X=400m,Y=250m.Z=0.4 

-1 

0 20 40 
TimeCtIO 

80 100 

(v) Trlai 15 

8 X=400m,Y=300m.Z=04m 

0 20 40 60 80 100 
Time (s) 

(VIII Trlai 19 1 
121 x=45om, Y=250m, Z=04m 

I 

0 20 40 60 80 100 
TlmekJ 

0 20 40 60 80 100 
TtmeW 

(VI) Trial 14 

8_ X=400m, Y=300m, Z=04m 

0 
0 20 40 60 80 100 

TlrneCs.1 

0 20 40 
Time I?? 

80 100 
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Fig. 5.5 (continued). 

random parameters .& tP, jointly distributed according to p ( t,, tp ) , we have 
the following expression for the r-th order moments, 

c’(t) =~[CWIL, $AP(L, $) dt,dt, (5.1) 

It suffices to consider only the simplest possible model: to identify t,, tP with 
the arrival and departure times and to assume; 

f3,forallt,<t<tp 
C(t) = 

1 

(5.2) 
0 foralltKt,,t>tfi 

Given that t,, tB are distributed independently according to ,u ( t ) , Y ( t ) respec- 
tively we have, 

and hence, 

ta 

C(t) =e, SI P(t,b’(t,rtt,) dtp dt, 
0 t 

(5.3) 

(5.4) 

F(t) =e,C( t) (5.5) 

To obtain specific results from the above we have to choose particular forms 
for the probability densities p ( t) , Y ( t) . The following definitions lead to par- 
ticularly simple results, 

p(t) = 
(l/a) e-(t-d)/a 

0 

: tad : u(t) = l/C e-(t-b)‘c :tab 
: ttd 0 : ttb (5.6) 

Hence, 
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C(t)= 0 :ttd ; else 

C(t) = 

ta t-b t-ta 

e - t=/ae - “/“&&, _ s I e - khe -S/C &dt, 

d b 

={et/a ed/a (eb/Q_l) _ 

C 1-l cd/a eb/c e-t/c e-d(c--o)/ac _e (t-b)(c--n)/ac 
c-a 

2 Similarly we may calculate C according to, 

2 c”(t)={C <t)-P(t)} 

97 

(5.7) 

Some illustrations of eqn. (5.7) and of Jc” ( t), R(C) are included in Fig. 
5.7. Evidently these results display many of the features deduced experimen- 
tally from the Thorney Island data. Thus Fig. 5.7 (i) is characteristic of the 
decay of C ( X, t) with time while Fig. 5.7 (ii) displays the same double peaked 
structure observed for ,,/c” (x, t) earlier. Further investigations along these 
lines are thus clearly to be desired. A priority would be to clarify the model 
dependence of these properties, particularly in respect of C ( t 1 t,, tp ) . 

6. Estimates of the variability and conclusions 

The description of the variability in dense gas dispersion is ultimately an 
important aim of investigations like the one described above. Estimates of R ( C) 
may be obtained by simply making use of the estimates of C, c” in the definition 
R (C) =c2/c2. In this section we shall discuss the results obtained by such a 
procedure and indicate some possibilities for future research. 

The overall magnitude of the variance ratio for this ensemble of the Thorney 
Island experiments is illustrated in Fig. 6.1 as a function of C, the ensemble 
mean concentration. Evidently there is substantial variation in the value of 
R (C) even at constant C. For the most part these estimates are small, though 
spurious, very large, values of R ( C) also occur. It is to be noted that a useful 
bound is provided by the empirical law, 

R(C) =c(l/c-1) 

suggested by Chatwin [ 3 ] with E = 0.04. 

(6.1) 

Some idea of the point to point variation of R (C) with time can be obtained 
by comparing the two sets of estimates of c( X, t), ,,@ (x, t) in Figs. 5.2 and 
5.5. The principal features of this estimate are easy to deduce because C(t) , 
&? ( t) are complementary in form. Hence it appears the time dependence of 
R ( C) is characterised by two large peaks one near the beginning and one near 
the end of the record, where R is upwards of order unity, interspersed by a 
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Fig. 6.1. The fluctuation intensity as a function of the mean concentration. 

broad trough were R % 0.1. It is interesting to note that this structure is appar- 
ent even when it is not foreshadowed in the behaviour of Jc” ( t) , as in Figs. 
5.2 (vi) and 5.5 (vii). Further away from the origin of the release R(C) becomes 
almost symmetrical with respect to time and the extent of variation across the 
record decreases, eventually disappearing. Generally speaking R ( C) tends to 
increase with time. 

Similar features are observed on comparison of the two sets of contour dia- 
gram presented earlier. For the most part inside of a narrow, rather poorly 

Fig. 6.2. The area averaged fluctuation intensity as a function of time. 
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defined, zone on the periphery of the cloud R(C) is stable or slowly varying 
with a value about 0.2. Near the perimeter of the cloud R is larger, being close 
to unity. The time evolution of this property however is difficult to judge on 
the basis of such a limited set of estimates. 

These observations are interesting because very similar conclusions have 
been reached by Davies [ 91. These are that; 

(a) R ( C) may be considered constant for a substantial fraction of the total 
recordof C(t), 

(b) R (C) may be considered constant over much of the area of the cloud. 
In fact a similar conclusion may be deduced by examining the variation of 
R(C) for the simple step model , eqn. (5.2). Including the other properties 
mentioned above these observations are indicative of a ‘core-bulk’ structure to 
the mean cloud. 

This possibility was originally suggested in theoretical work of Chatwin and 
Sullivan [ 201 on the dispersion of very small clouds in a field of turbulence. 
That it should occur here in phenomena on such a large scale is perhaps rather 
surprising. It is probably a consequence of a broad compatibility with the basic 
physics of Chatwin and Sullivan’s model - namely the advection of a finite 
cloud in turbulence with a finite scale of variation. Having said this it is impor- 
tant to emphasise that such behaviour has disturbing consequences. Hence the 
profiles of C ( X, t) , i? (x, t ) . R ( C) can never be self similar, except asymptot- 
ically as the ‘core’ (i.e. the trough in the profile of R(C) ) decreases to zero 
with time. 

In view of this conclusion it is worthwhile to examine the possibility of defin- 
ing an area averaged record for R ( C) . Spurious large values of R(C) abound 
as by-product of the estimation procedure and present an obstruction to this 
task, additional to the ‘core-bulk’ structure mentioned above. Nonetheless it 
was possible to do this by averaging over all the spatial data points at fixed 
time for which 0 d R ( C) < 10’. The result is presented in Fig. 6.2. 

Clearly three distinct regimes of behaviour are apparent. At small time there 
is an initial, very large, drop in the value of R (C) from a peak about the value 
of 5, terminating after roughly 30 s with R (C) N 1. The second distinctive prop- 
erty is quite a well defined core to the profile of R, apparent for times between 
30 and 110 s from the release, where R(C) 2: 1. Finally there is a transition 
from this value of the fluctuation intensity to a new plateau about R(C) = 4 
that occurs roughly 160 s after the release. It is interesting to speculate on the 
origins of this structure to R(C) . 

The first of these features coincides with that stage in the dispersion of a gas 
cloud when buoyancy forces are at their most significant. Hence the rapid fall 
in the value of R may well be one consequence of this influence since buoyancy 
is well known to dissipate ? [ 31. On the other hand this feature may well be 
due to deficiencies in the data set since very few observations of C (x, t) are 
available for tc 30 s. The core structure to R (C) probably corresponds to a self 
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similar phase in the dispersion of the gas cloud. This is interesting because, if 
this is the case, a box model for c and pmay well be appropriate for 30 < tc 110 
s. For times greater than about 110 s the dispersion is no-longer associated 
with significant buoyancy forces since c is then of the order of a few per cent. 
This may correspond to the final, passive stage of the dispersion. 

An important conclusion to this discussion is that the variability for the 
ensemble of Thorney Island experiments considered in this paper is bound to 
be large because it is characterised by values of R ( C) of order unity. In view of 
the significance this has for the assessment of hazards in dense gas dispersion 
it is important to emphasise the role of the basic physical processes responsible 
for this phenomenon. 

Concentration fluctuations in absolute diffusion are generated by two sources: 
(i) by the occurrence of concentration variations within the body of the 

cloud; 
(ii) by variations in the rate of advection of the cloud by the external flow 

field. 
In the ensemble of experiments studied here some amount of physical variation 
between the component trials is also implicit. 

Every indication points to the second of the above alternatives, i.e. mean- 
dering, as being the main source of variability in dense gas dispersion. This is 
particularly apparent in the early stages of the dispersion when the advection 
of the narrow, annular concentration profile generates fluctuations over a wide 
area. Later in the dispersion this process is less significant because the cloud 
is larger and less well defined. Nevertheless fluctuations due to long term vari- 
ations (trends) in the rate of advection may still generate substantial varia- 
bility by the same process of accretion over time. It is thus necessary to study 
this phenomenon with respect to a precise definition of the statistical proper- 
ties of the frame of reference, i.e. the ensemble. 

Several alternatives to the ensemble discussed in this investigation have 
already been indicated in Section 3 of this paper. One of these in particular 
should be singled out for future study. This is ensemble 3 (ii) which, because 
of radially symmetry, is most suitable for a comparison with the only practical, 
physically based, model of dense gas dispersion - the box model. There are also 
computational advantages in an analysis from this perspective. Thus there is 
considerable justification for such an investigation, preferably using a nonlin- 
ear smoother of the form proposed in eqn. (2.16). Though only of indirect 
relevance to the practical problem of hazard assessment this would prove par- 
ticularly useful for theoretical purposes and also in bounding R ( C) from above. 
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